Layer-by-layer-assembled multilayer films for transcutaneous drug and vaccine delivery.
نویسندگان
چکیده
We describe protein- and oligonucleotide-loaded layer-by-layer (LbL)-assembled multilayer films incorporating a hydrolytically degradable polymer for transcutaneous drug or vaccine delivery. Films were constructed based on electrostatic interactions between a cationic poly(beta-amino ester) (denoted Poly-1) with a model protein antigen, ovalbumin (ova), and/or immunostimulatory CpG (cytosine-phosphate diester-guanine-rich) DNA oligonucleotide adjuvant molecules. Linear growth of nanoscale Poly-1/ova bilayers was observed. Dried ova protein-loaded films rapidly deconstructed when rehydrated in saline solutions, releasing ova as nonaggregated/nondegraded protein, suggesting that the structure of biomolecules integrated into these multilayer films is preserved during release. Using confocal fluorescence microscopy and an in vivo murine ear skin model, we demonstrated delivery of ova from LbL films into barrier-disrupted skin, uptake of the protein by skin-resident antigen-presenting cells (Langerhans cells), and transport of the antigen to the skin-draining lymph nodes. Dual incorporation of ova and CpG oligonucleotides into the nanolayers of LbL films enabled dual release of the antigen and adjuvant with distinct kinetics for each component; ova was rapidly released, while CpG was released in a relatively sustained manner. Applied as skin patches, these films delivered ova and CpG to Langerhans cells in the skin. To our knowledge, this is the first demonstration of LbL films applied for the delivery of biomolecules into skin. This approach provides a new route for storage of vaccines and other immunotherapeutics in a solid-state thin film for subsequent delivery into the immunologically rich milieu of the skin.
منابع مشابه
Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery.
Here we introduce a new approach for transcutaneous drug delivery, using microneedles coated with stabilized lipid nanocapsules, for delivery of a model vaccine formulation. Poly(lactide-co-glycolide) microneedle arrays were coated with multilayer films via layer-by-layer assembly of a biodegradable cationic poly(β-amino ester) (PBAE) and negatively charged interbilayer-cross-linked multilamell...
متن کاملEffect of pH on the structure and drug release profiles of layer-by-layer assembled films containing polyelectrolyte, micelles, and graphene oxide.
Layer by layer (lbl) assembled multilayer thin films are used in drug delivery systems with attractive advantages such as unlimited selection of building blocks and free modification of the film structure. In this paper, we report the fundamental properties of lbl films constructed from different substances such as PS-b-PAA amphiphilic block copolymer micelles (BCM) as nano-sized drug vehicles,...
متن کاملMultilayer Nano Films for Corrosion Control
Nano films consisting of an alternating sequence of positively and negatively charged polyelectrolytes have been prepared by means of the electrostatic layer-by-layer (LBL) sequential assembly technique on treated and untreated mild steel wires. Inhibitor was encapsulated between cationic and anionic polyelectrolyte nano films. This paper mainly focuses on the effect of these nano-films of poly...
متن کامل[Development of Functional Multilayer Nanofilms and Microcapsules Based on Layer-by-Layer Deposition Techniques].
Functional multilayer thin films have been prepared by layer-by-layer (LbL) deposition for the development of sensors, separators, and drug delivery systems. In particular, glucose-sensitive LbL films have been widely studied for use as glucose sensors and in glucose-triggered drug delivery systems. In this work, I report on glucose-sensitive LbL films that consist of concanavalin A (ConA), phe...
متن کاملMultilayer films assembled from naturally-derived materials for controlled protein release.
Herein we designed and characterized films composed of naturally derived materials for controlled release of proteins. Traditional drug delivery strategies rely on synthetic or semisynthetic materials or utilize potentially denaturing assembly conditions that are not optimal for sensitive biologics. Layer-by-layer (LbL) assembly of films uses benign conditions and can generate films with variou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 3 11 شماره
صفحات -
تاریخ انتشار 2009